Geometric effect on near-field heat transfer analysis using efficient graphene and nanotube models
Kristo Nugraha Lian () and
Jian-Sheng Wang
Additional contact information
Kristo Nugraha Lian: Centre for Quantum Technologies, National University of Singapore
Jian-Sheng Wang: National University of Singapore
The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 7, 1-7
Abstract:
Abstract Following the recent research enthusiasm on the effect of geometry on near-field heat transfer (NFHT) enhancement, we present an analysis based on simplified yet highly efficient graphene and nanotube models. Two geometries are considered: that of two parallel infinite “graphene” surfaces and that of a one-dimensional infinite “nanotube” line in parallel with an infinite surface. Due to its symmetry, the former is in principal simpler to analyze and even so, earlier works suggested that the application of a full model in this problem still demands heavy computations. Among other findings, our simplified computation – having successfully replicated the results of relevant earlier works – suggests a sharper NFHT enhancement dependence on distance for the line-surface system, namely J ~ d−5.1 as compared to J ~ d−2.2 for the parallel surface. Such comparisons together with applications of our efficient approach would be the important first steps in the attempt to find a general rule describing geometric dependence of NFHT. Graphical abstract
Keywords: Computational; Methods (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-10164-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:7:d:10.1140_epjb_e2020-10164-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2020-10164-8
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().