EconPapers    
Economics at your fingertips  
 

Chimera states in Leaky Integrate-and-Fire dynamics with power law coupling

Astero Provata () and Ioannis E. Venetis
Additional contact information
Astero Provata: Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”
Ioannis E. Venetis: Computer Engineering and Informatics Department, University of Patras

The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 8, 1-9

Abstract: Abstract We investigate the robustness of chimera states under the influence of a nonlinear coupling in the form of a power law with exponent α. Taking as working example the Leaky Integrate-and-Fire model coupled in a 1D ring geometry, we show that the chimera states prevail for large values of the exponent α and small values of the coupling strength, while full synchronization is observed in the opposite ends. Our numerical results indicate that the coupling range R does not influence the frequency of oscillations in the coherent or in the incoherent domains. To the contrary, the R value affects the form of the chimera state: the size of the incoherent domains increase monotonically with R in expense of the size of the coherent ones. As an added value, our numerical results demonstrate that the frequency of oscillations decreases monotonically with the power exponent α. This feature can be useful in controlling the frequency of a network of oscillators by simply varying the nonlinearity exponent in the coupling, without modifying any of the other network attributes or parameters. Graphical abstract

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-10252-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:8:d:10.1140_epjb_e2020-10252-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2020-10252-9

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:93:y:2020:i:8:d:10.1140_epjb_e2020-10252-9