EconPapers    
Economics at your fingertips  
 

Superconductivity and intra-unit-cell electronic nematic phase in the three-band model of cuprates

Michal Zegrodnik (), Andrzej Biborski and Jozef Spałek
Additional contact information
Michal Zegrodnik: Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology
Andrzej Biborski: Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology
Jozef Spałek: Institute of Theoretical Physics, Jagiellonian University

The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 9, 1-8

Abstract: Abstract The intra-unit-cell nematic phase is studied within the three-band Emery model of the cuprates by using the diagrammatic expansion of the Gutzwiller wave function (DE-GWF). According to our analysis a spontaneous rotational (C4) symmetry breaking of the electronic wave function, leading to the nematic behavior, can appear due to electron correlations induced mainly by the onsite Coulomb repulsion, even in the absence of the corresponding intersite oxygen–oxygen repulsion term. The latter has been considered as the triggering factor of the nematic state formation in a number of previous studies. Also, we show that at the transition to the nematic phase, electron concentration transfer from d- to p-orbitals takes place, apart from the usually discussed px∕py polarization. The nematicity appears in a similar doping range as the paired phase, showing that both phases may have a common origin, even though they compete. As we show a coexistence region of both superconductivity and nematicity appears in a relatively wide doping range. The results are discussed in view of the experimental findings corresponding to the relation between nematicity and pseudogap behavior. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-10290-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:9:d:10.1140_epjb_e2020-10290-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2020-10290-3

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:93:y:2020:i:9:d:10.1140_epjb_e2020-10290-3