EconPapers    
Economics at your fingertips  
 

Multiple timescale molecular dynamics with very large time steps: avoidance of resonances

C. R. A. Abreu () and M. E. Tuckerman ()
Additional contact information
C. R. A. Abreu: Universidade Federal do Rio de Janeiro
M. E. Tuckerman: New York University

The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 11, 1-13

Abstract: Abstract Reversible multiple timescale (MTS) integration algorithms have long been recognized as a straightforward way to increase efficiency and extend accessible timescales in molecular dynamics simulations without altering the ensemble distribution sampled. MTS methods are based on the idea that interatomic forces in a system drive motion on numerous timescales, and by decomposing force components according to these timescales and assigning an individual time step to each one, fast, computationally cheaper forces are evaluated more frequently than the slow, expensive forces. As it happens, the largest time step that can be employed in standard MTS methods is fundamentally limited by so-called resonance artifacts that originate in the fastest timescales. Thus, while it should be possible to assign the slowest timescales very large time steps approaching 100 fs in, for example, fully atomistic simulations, resonances impose a practical limit on this step size to around 5–10 fs, which allows for useful but only modest savings in computational overhead. This article will review the basic MTS approach and the origin of resonances and then will provide a perspective on how to solve the resonance problem for molecular dynamics simulations in different ensembles, showing how both statistical and dynamical properties can be generated with very large time steps.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-021-00226-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:11:d:10.1140_epjb_s10051-021-00226-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-021-00226-4

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:94:y:2021:i:11:d:10.1140_epjb_s10051-021-00226-4