Spontaneous decay of artificial atoms in a three-qubit system
Ya. S. Greenberg,
A. A. Shtygashev and
A. G. Moiseev
Additional contact information
Ya. S. Greenberg: Novosibirsk State Technical University
A. A. Shtygashev: Novosibirsk State Technical University
A. G. Moiseev: Novosibirsk State Technical University
The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 11, 1-19
Abstract:
Abstract We study the evolution of qubits amplitudes in a one-dimensional chain consisting of three equidistantly spaced noninteracting qubits embedded in an open waveguide. The study is performed in the frame of single-excitation subspace, where the only qubit in the chain is initially excited. We show that the dynamics of qubits amplitudes crucially depend on the value of kd, where k is the wave vector and d is a distance between neighbor qubits. If kd is equal to an integer multiple of $$\pi $$ π , then the qubits are excited to a stationary level. In this case, it is the dark states which prevent qubits from decaying to zero, even though they do not contribute to the output spectrum of photon emission. For other values of kd, the excitations of qubits exhibit the damping oscillations which represent the vacuum Rabi oscillations in a three-qubit system. In this case, the output spectrum of photon radiation is determined by a subradiant state which has the lowest decay rate. We also investigated the case with the frequency of a central qubit being different from that of the edge qubits. In this case, the qubits’ decay rates can be controlled by the frequency detuning between the central and the edge qubits.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-021-00228-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:11:d:10.1140_epjb_s10051-021-00228-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-021-00228-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().