EconPapers    
Economics at your fingertips  
 

Equation of motion truncation scheme based on partial orthogonalization

Francesco Catalano () and Johan Nilsson ()
Additional contact information
Francesco Catalano: Uppsala University
Johan Nilsson: Uppsala University

The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 1, 1-13

Abstract: Abstract We introduce a general scheme to consistently truncate equations of motion for Green’s functions. Our scheme is guaranteed to generate physical Green’s functions with real excitation energies and positive spectral weights. There are free parameters in our scheme akin to mean field parameters that may be determined to get as good an approximation to the physics as possible. As a test case we apply our scheme to a two-pole approximation for the 2D Hubbard model. At half-filling we find an insulating solution with several interesting properties: it has low expectation value of the energy and it gives upper and lower Hubbard bands with the full non-interacting bandwidth in the large U limit. Away from half-filling, in particular in the intermediate interaction regime, our scheme allows for several different phases with different number of Fermi surfaces and topologies. Graphic abstract

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-020-00032-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:1:d:10.1140_epjb_s10051-020-00032-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-020-00032-4

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:94:y:2021:i:1:d:10.1140_epjb_s10051-020-00032-4