Kinematic interaction and condensation factor in two-dimensional quantum Heisenberg ferromagnet
Bao Xu ()
Additional contact information
Bao Xu: Baotou Teachers’ College
The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 1, 1-12
Abstract:
Abstract We investigate the influences of Dyson’s kinematic and dynamic interaction on the physical properties of two-dimensional quantum Heisenberg ferromagnet with O(3) rotational symmetry. It is found that the repulsive potential led by dynamic interaction modifies the third large term with $$T^{3}$$ T 3 in the low-temperature series of specific heat. Under mean-field approximation, the kinematic interaction transforms the occupation-number configuration into a coherent-state configuration and significantly improves the result of modified spin wave theory in the high-temperature limit. In the low-temperature limit, the kinematic-interaction contribution to specific heat is negligibly small. For finite-size systems, it is found that a crossover temperature can be used to characterize the transition to a single-domain-type magnet. In the thermodynamic limit, the condensation factor (the number of zero-mode magnons) dominates the isothermal compressibility of magnon gas although there is not a real phase transition at finite temperatures. The asymptotic behavior of static structure factor depends on the relative size of the spin-wave wavelength with respect to the correlation length. Graphic abstract
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-020-00041-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:1:d:10.1140_epjb_s10051-020-00041-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-020-00041-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().