EconPapers    
Economics at your fingertips  
 

Path to fixation of evolutionary processes in graph-structured populations

Mahdi Hajihashemi () and Keivan Aghababaei Samani ()
Additional contact information
Mahdi Hajihashemi: Isfahan University of Technology
Keivan Aghababaei Samani: Isfahan University of Technology

The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 2, 1-9

Abstract: Abstract We study the spreading of a single mutant in graph-structured populations with a birth-death update rule. We use a mean-field approach and a Markov chain dynamics to investigate the effect of network topology on the path to fixation. We obtain approximate analytical formulas for average time versus the number of mutants in the fixation process starting with a single mutant for several network structures, namely, cycle, complete graph, two- and three-dimensional lattices, random graph, regular graph, Watts–Strogatz network, and Barabási–Albert network. In the case of the cycle and complete graph, the results are accurate and in line with the results obtained by other methods. In the case of two- and three-dimensional lattice structures, some efforts are made in other studies to provide an analytical justification for simulation results of the evolutionary process, but they can explain just the onset of the fixation process, not the whole process. The results of the analytical approach of the present paper are well fitted to the simulation results throughout the whole fixation process. Moreover, we analyze the dynamics of evolution for a number of complex structures, and in all cases, we obtain analytical results which are in good agreement with simulations. Our results may shed some light on the process of fixation during the whole path to fixation. Graphic Abstract

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-021-00061-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:2:d:10.1140_epjb_s10051-021-00061-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-021-00061-7

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:94:y:2021:i:2:d:10.1140_epjb_s10051-021-00061-7