Supersymmetric spin–phonon coupling prevents odd integer spins from quantum tunneling
Kilian Irländer,
Heinz-Jürgen Schmidt and
Jürgen Schnack ()
Additional contact information
Kilian Irländer: Fakultät für Physik, Universität Bielefeld
Heinz-Jürgen Schmidt: Fachbereich Physik, Universität Osnabrück
Jürgen Schnack: Fakultät für Physik, Universität Bielefeld
The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 3, 1-10
Abstract:
Abstract Quantum tunneling of the magnetization is a phenomenon that impedes the use of small anisotropic spin systems for storage purposes even at the lowest temperatures. Phonons, usually considered for temperature dependent relaxation of magnetization over the anisotropy barrier, also contribute to magnetization tunneling for integer spin quantum numbers. Here we demonstrate that certain spin–phonon Hamiltonians are unexpectedly robust against the opening of a tunneling gap, even for strong spin–phonon coupling. The key to understanding this phenomenon is provided by an underlying supersymmetry that involves both spin and phonon degrees of freedom.
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-021-00073-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:3:d:10.1140_epjb_s10051-021-00073-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-021-00073-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().