Extended Lagrangian Born–Oppenheimer molecular dynamics: from density functional theory to charge relaxation models
Anders M. N. Niklasson ()
Additional contact information
Anders M. N. Niklasson: Los Alamos National Laboratory
The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 8, 1-27
Abstract:
Abstract We present a review of extended Lagrangian Born–Oppenheimer molecular dynamics and its most recent development. The molecular dynamics framework is first derived for general Hohenberg–Kohn density functional theory and it is then presented in explicit forms for thermal Hartree–Fock theory using a density matrix formalism, for self-consistent charge density functional tight-binding theory, and for general non-linear charge relaxation models that can be designed and optimized using modern machine learning methods. Our intention is to give a self-contained but brief and hopefully pedagogical presentation. Graphic abstract
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-021-00151-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:8:d:10.1140_epjb_s10051-021-00151-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-021-00151-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().