Ultrafast dynamics with the exact factorization
Federica Agostini () and
E. K. U. Gross
Additional contact information
Federica Agostini: Université Paris-Saclay, CNRS
E. K. U. Gross: The Hebrew University of Jerusalem
The European Physical Journal B: Condensed Matter and Complex Systems, 2021, vol. 94, issue 9, 1-14
Abstract:
Abstract The exact factorization of the time-dependent electron–nuclear wavefunction has been employed successfully in the field of quantum molecular dynamics simulations for interpreting and simulating light-induced ultrafast processes. In this work, we summarize the major developments leading to the formulation of a trajectory-based approach, derived from the exact factorization equations, capable of dealing with nonadiabatic electronic processes, and including spin-orbit coupling and the non-perturbative effect of an external time-dependent field. This trajectory-based quantum-classical approach has been dubbed coupled-trajectory mixed quantum-classical (CT-MQC) algorithm, whose performance is tested here to study the photo-dissociation dynamics of IBr. Graphic abstract
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-021-00171-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:94:y:2021:i:9:d:10.1140_epjb_s10051-021-00171-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-021-00171-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().