Thermal spin–orbit torque in spintronics
Zheng-Chuan Wang ()
Additional contact information
Zheng-Chuan Wang: The University of Chinese Academy of Sciences
The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 1, 1-6
Abstract:
Abstract Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively. Graphic abstract We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00275-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:1:d:10.1140_epjb_s10051-022-00275-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-022-00275-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().