Dependence of cuprous oxide conductivity on metal doping: a hybrid density functional simulation
Mohammed Benaissa (),
Hayet Si Abdelkader and
Ghouti Merad
Additional contact information
Mohammed Benaissa: University of Tlemcen
Hayet Si Abdelkader: University of Tlemcen
Ghouti Merad: University of Tlemcen
The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 5, 1-11
Abstract:
Abstract Multiple metallic elements were screened as doping agents to alternate conductivity in cuprous oxide (Cu2O). Energetic, charge transition levels and optical properties of Be, Mg, Ca, Sr, Zn, Cd, Hg, Al, Ga, and In substitutionally doped Cu2O systems were investigated based on first principles methods. Results of formation energy calculation under both Cu-rich and Cu-poor conditions indicate the easy incorporation of 2A (Be, Mg, Ca, and Sr) group impurities into the crystal lattice of Cu2O under both conditions. However, 3A (Al, Ga, and In) group impurities could be incorporated only under Cu-poor conditions. While, the incorporation of Zn, Cd, and Hg in Cu2O is energetically less favorable under both conditions. The calculated charge transition levels of these dopants revealed an n-type conductivity. The calculated work functions show n-type to p-type surface inversion behavior for some doped systems. This can explain the p-type conductivity of Mg-doped Cu2O found experimentally. Furthermore, the optical properties of each system are calculated to investigate the effect of the introduced impurity on Cu2O. This study can help identify potential dopants to use for solar cell fabrication. Graphical abstract
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00340-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:5:d:10.1140_epjb_s10051-022-00340-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-022-00340-x
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().