Topological defect states and phase transitions in mesoscopic superconducting squares with Rashba spin–orbit interaction
Rui-Feng Chai and
Guo-Qiao Zha ()
Additional contact information
Rui-Feng Chai: Shanghai University
Guo-Qiao Zha: Shanghai University
The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 6, 1-8
Abstract:
Abstract Based on the spin-generalized Bogoliubov–de Gennes theory, we investigate the topological defect configurations in a mesoscopic superconducting square with spin–orbit (SO) interaction. The mixed even-parity d-wave and extended s-wave components can be obtained by suitable choice of the chemical potential in such a system. We find that several novel types of topological defect states can be generated in the presence of Rashba SO coupling when the external magnetic flux turns on. Unclosed domain-wall states carrying even or odd number of one-component vortices as well as double-quanta skyrmionic patterns can appear for different Rashba SO-coupling strengths. The next-nearest-neighbor hopping effect on the evolution of topological structures is further examined. A skyrmionic chain feature with one-component vortex–antivortex pairs can show up in the present mixed-pairing system. Our investigation may provide useful information for future experiments and shed new light on device designing.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00369-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:6:d:10.1140_epjb_s10051-022-00369-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-022-00369-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().