Comparative study on transport and optical properties of silicon carbide nanoribbons with different terminations
Ming-Yue Sun,
Yi-Zhen Li,
Xiao-Xia Yu,
Wei-Kai Liu,
Shuang-Shuang Kong,
Pei Gong and
Xiao-Yong Fang ()
Additional contact information
Ming-Yue Sun: Yanshan University
Yi-Zhen Li: Yanshan University
Xiao-Xia Yu: Yanshan University
Wei-Kai Liu: Yanshan University
Shuang-Shuang Kong: Yanshan University
Pei Gong: Yanshan University
Xiao-Yong Fang: Yanshan University
The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 9, 1-9
Abstract:
Abstract Silicon carbide nanoribbons (SiCNRs) are a novel layered material with potential value in the field of nanodevices. Based on the first-principles calculation, we investigated the effects of different terminations on the bandgap, transport, and optical properties of SiCNRs. The results show that for infinite width nanoribbons, the bandgap of SiCNSs with translational periodicity is increased and the optical anisotropy is more pronounced compared with that of SiCNTs with circular periodicity. For finite-width SiCNRs, impurity-like levels appear in the bandgap, which originate from the dispersion of the energy bands due to dangling bonds at the edges and nano-size effects, respectively. The dangling bonds are saturated with hydrogen atoms for hydrogen-passivated SiCNRs (H–SiCNRs), the energy levels are more discretized and the bandgap is reduced. Simulation of transport properties of different terminations shows that the variation range hopping mechanism caused by finite width is the dominant mechanism below room temperature, and the optical phonon scattering is the dominant mechanism above room temperature. In addition, the dielectric response of H–SiCNRs appeared in the deep-UV region. These findings are favorable for the application of SiC nanomaterials in optoelectronic devices. Graphical abstract
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00407-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00407-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-022-00407-9
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().