EconPapers    
Economics at your fingertips  
 

Electromagnetically induced transparency in a spherical Gaussian quantum dot

S. Taghipour, G. Rezaei () and A. Gharaati
Additional contact information
S. Taghipour: Payam Noor University
G. Rezaei: Yasouj University
A. Gharaati: Payam Noor University

The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 9, 1-9

Abstract: Abstract This paper will focus on studying the effects of external electric field, hydrostatic pressure, impurity position, as well as the geometrical size on the electromagnetically induced transparency of a spherical Gaussian quantum dot. To this end, we discuss absorption coefficient, refractive index, and the group velocity of the probe light pulse under the influence of the above-mentioned agents. Our results reveal that the electromagnetically induced transparency occurs in the system and the geometrical size of the spherical Gaussian quantum dot system, confinement potential, hydrostatic pressure, and impurity position impact strongly on its frequency, transparency window, and group velocity of the probe field. Obtained results indicate that compared to the atomic system, one can control electromagnetically induced transparency and the group velocity of light through the confinement potential, external agents, and geometrical size of the dot.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00409-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00409-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-022-00409-7

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00409-7