Minimal model of an active solid deviates from equilibrium mechanics
Mario Sandoval ()
Additional contact information
Mario Sandoval: Universidad Autonoma Metropolitana-Iztapalapa
The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 9, 1-9
Abstract:
Abstract In this work, the mechanical response of an one-dimensional active solid—defined as a network of active stochastic particles interacting by nonlinear hard springs— subject to an external deformation force, is numerically studied and rationalized with a minimal model. It is found that an active solid made of linear springs and subject to an external stress presents an average deformation which is independent of the system’s activity. However, when the active solid is made of nonlinear hard springs, the solid’s average deformation decreases with respect to a passive system under the same conditions, and as a function of activity and rotational noise in the system. The latter result may shed light on new ways to creating an active metamaterial, which could tune its stiffness by moving either its activity or rotational noise. Graphical abstract
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-022-00421-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00421-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-022-00421-x
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().