Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons
Fouad N. Ajeel () and
Ali Ben Ahmed
Additional contact information
Fouad N. Ajeel: University of Sfax
Ali Ben Ahmed: University of Sfax
The European Physical Journal B: Condensed Matter and Complex Systems, 2023, vol. 96, issue 10, 1-10
Abstract:
Abstract Density Functional-based Tight-Binding coupled with Non-Equilibrium Green Function calculations is used to study the influence of the boron substitutional doping in the Stone–Wales defect on the structural, electronic, and thermoelectric properties of armchair graphene nanoribbons (AGNRs). The cohesive energies and the defect formation energy of all doped structures are estimated in terms of total energies, and it is also shown that the impurity site plays a part in controlling the characteristics of structures where some sites are most energetically favorable. The enhanced scattering at the boundaries will reduce thermal conductivity, the more asymmetry is, the stronger the boundary effect is. Moreover, Stone–Wales defects and boron substitutional doping may increase the scattering of phonons and thus reduce thermal conductivity. It is noted with boron substitution, a complete electron backscattering area is created in doped structures, and the specific placement of that is determined by the doping sites. We discussed the electron and phonon transport characteristics of doped AGNRs. The results propose that substitutional doping play a significant role in altering the thermoelectric properties of AGNRs with topological defects at specific doping locations, providing a roadmap for the synthesis and design of custom-made AGNRs for specific thermoelectricboundary effect is. Moreover, Stone–Wales defects and boron substitutional doping may increase the scattering of phonons and thus reduce thermal conductivity. It is noted with boron substitution, a complete electron backscattering area is created in doped structures, and the specific placement of that is determined by the doping sites. We discussed the electron and phonon transport characteristics of doped AGNRs. The results propose that substitutional doping play a significant role in altering the thermoelectric properties of AGNRs with topological defects at specific doping locations, providing a roadmap for the synthesis and design of custom-made AGNRs for applications. Graphical abstract Schematic of the thermoelectric device based on (a) pristine AGNRs and (b) AGNRs-SW defect
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-023-00597-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:96:y:2023:i:10:d:10.1140_epjb_s10051-023-00597-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-023-00597-w
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().