EconPapers    
Economics at your fingertips  
 

Computational analysis of CdS monolayer nanosheets for gas-sensing applications

Warood Kream Alaarage, Abbas H. Abo Nasria () and Heider A. Abdulhussein ()
Additional contact information
Warood Kream Alaarage: University of Kufa
Abbas H. Abo Nasria: University of Kufa
Heider A. Abdulhussein: University of Kufa

The European Physical Journal B: Condensed Matter and Complex Systems, 2023, vol. 96, issue 10, 1-15

Abstract: Abstract The pollution of the atmospheric environment has significantly increased due to the rapid growth of population and industrial development. To prevent environmental disasters caused by such deterioration, it is imperative to control and monitor such pollutants. This study investigates the structural, electronic, and optical characteristics of the CdS monolayer nanosheets, and evaluates their gas adsorption behavior for various gas molecules (CO2, SO2, H2S, CO, and SO) using DFT calculations. SO2, H2S, and CO are found to show weak adsorption suggesting the physisorption behavior, whereas CO2 and SO adsorption systems are found to undergo chemical adsorption on the CdS surface, suggesting it as a promising sensing material for the latter gasses. The electronic structure and geometrical positions of the gas molecules on monolayer CdS surface have been analyzed, revealing a significant alteration in the band gap of CdS upon the the adsorption of gas molecules. We also investigated the optical properties of the monolayer CdS in the presence of the gasses, indicating that the real and imaginary components of the dielectric function are crucial for sensing applications, and changes in the absorption spectrum of the CdS monolayer upon adsorption of the different gasses can be attributed to the specific electronic and chemical properties of each gas and their interaction with the CdS surface. Graphical Abstract The analysis of the electron localization function (ELF) and charge density differences (CDD) is shown here for CO/CdS and SO/CdS systems. The high degree of ELF and CDD indicates chemisorption (SO/CdS system), while a low degree (or negligible) of ELF and CDD suggests physisorption (CO/CdS system)

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-023-00601-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:96:y:2023:i:10:d:10.1140_epjb_s10051-023-00601-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-023-00601-3

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:eurphb:v:96:y:2023:i:10:d:10.1140_epjb_s10051-023-00601-3