Cross-relation characterization of knowledge networks
Eric K. Tokuda (),
Renaud Lambiotte and
Luciano da F. Costa
Additional contact information
Eric K. Tokuda: University of Oxford
Renaud Lambiotte: University of Oxford
Luciano da F. Costa: University of São Paulo
The European Physical Journal B: Condensed Matter and Complex Systems, 2023, vol. 96, issue 11, 1-19
Abstract:
Abstract Knowledge networks are large, interconnected data sets of knowledge that can be represented, studied and modeled using complex networks concepts and methodologies. One aspect of particular interest in this type of networks concerns how much the topological properties change along successive neighborhoods of each of the nodes. Another issue of special importance consists in quantifying how much the structure of a knowledge network changes at two different points along time. Here, we report a cross-relation study of two model—theoretical networks (Erdős–Rényi, ER, and Barabási–Albert model, BA) as well as real-world knowledge networks corresponding to the areas of Physics and Theology, obtained from the Wikipedia and taken at two different dates separated by 4 years. The respective two versions of these networks were characterized in terms of their respective cross-relation signatures, being summarized in terms of modification indices obtained for each of the nodes that are preserved among the two versions. It has been observed that the nodes at the core and periphery of both types of theoretical models yielded similar modification indices within these two groups of nodes, but with distinct values when taken across these two groups. The study of the real-world networks indicated that these two networks have signatures, respectively, similar to those of the BA and ER models, as well as that higher modification values tended to occur at the periphery nodes, as compared to the respective core nodes. Graphical abstract
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-023-00608-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:96:y:2023:i:11:d:10.1140_epjb_s10051-023-00608-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-023-00608-w
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().