EconPapers    
Economics at your fingertips  
 

Energetical self-organization of a few strongly interacting particles

Ioannis Kleftogiannis () and Ilias Amanatidis ()
Additional contact information
Ioannis Kleftogiannis: National Center for Theoretical Sciences
Ilias Amanatidis: Ben-Gurion University of the Negev

The European Physical Journal B: Condensed Matter and Complex Systems, 2023, vol. 96, issue 11, 1-8

Abstract: Abstract We study the quantum self-organization of a few interacting particles with strong short-range interactions. The physical system is modeled via a 2D Hubbard square lattice model, with a nearest-neighbor interaction term of strength U and a second nearest-neighbor hopping t. For t=0, the energy of the system is determined by the number of bonds between particles that lie on adjacent sites in the Hubbard lattice. We find that this bond order persists for the ground and some of the excited states of the system, for strong interaction strength, at different fillings of the system. For our analysis, we use the Euler characteristic of the network/graph grid structures formed by the particles in real space (Fock states), which helps to quantify the energetical(bond) ordering. We find multiple ground and excited states, with integer Euler numbers, whose values persist from the $$t=0$$ t = 0 case, for strong interaction $$U>>t$$ U > > t . The corresponding quantum phases for the ground state contain either density-wave-order(DWO) for low fillings, where the particles stay apart form each other, or clustering-order(CO) for high fillings, where the particles form various structures as they condense into clusters. In addition, we find various excited states containing superpositions of Fock states, whose probability amplitudes are self-tuned in a way that preserves the integer value of the Euler characteristic from the $$t=0$$ t = 0 limit. Graphic abstract

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-023-00613-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:96:y:2023:i:11:d:10.1140_epjb_s10051-023-00613-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-023-00613-z

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:eurphb:v:96:y:2023:i:11:d:10.1140_epjb_s10051-023-00613-z