EconPapers    
Economics at your fingertips  
 

Significant suppression of segregation in Schelling’s metapopulation model with star-type underlying topology

Guifeng Su () and Yi Zhang ()
Additional contact information
Guifeng Su: Shanghai Normal University
Yi Zhang: Shanghai Normal University

The European Physical Journal B: Condensed Matter and Complex Systems, 2023, vol. 96, issue 7, 1-6

Abstract: Abstract Segregation phase transition has long been considered a robust phenomenon in celebrated Schelling’s segregation model, the degree of segregation remains largely unchanged even with different underlying topologies. However, in this study, we have observed that a significant suppression of segregation can be achieved by modifying agents’ migration paths in a Schelling’s metapopulation model with a simple step utility function, based on an extremely heterogeneous star-type underlying complex network. We find that the degree of suppression is occupancy density dependent, and the effect is even more pronounced at higher occupancy densities. To explore the impact of this modification of migration paths, we suggest a random adding-link mechanism as well. We have observed that as the adding-link probability increases from zero to unity, the significantly suppressed segregation phase at lower probability eventually emerges. Moreover, we identified a scaling law of the average stationary interface density versus the re-scaled adding-link probability. Graphic abstract

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-023-00560-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:96:y:2023:i:7:d:10.1140_epjb_s10051-023-00560-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-023-00560-9

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:eurphb:v:96:y:2023:i:7:d:10.1140_epjb_s10051-023-00560-9