Effect of laser parameters on the structural properties of gadolinium oxide nanoparticles synthesis via pulsed laser ablation in liquid
Mayyadah H. Mohsin,
Khawla S. Khashan () and
Ghassan M. Sulaiman
Additional contact information
Mayyadah H. Mohsin: University of Technology
Khawla S. Khashan: University of Technology
Ghassan M. Sulaiman: University of Technology
The European Physical Journal B: Condensed Matter and Complex Systems, 2024, vol. 97, issue 10, 1-14
Abstract:
Abstract This study thoroughly investigates the characterization of cubic gadolinium oxide nanoparticles (c-Gd2O3NPs) synthesized via laser ablation and fragmentation in liquid, emphasizing the impact of laser fluence and wavelength on nanoparticle morphology. FESEM and HRTEM analyses reveal significant morphological variations, including the formation of nanotubes and nanoflakes, in response to different laser fluences. XRD analysis identifies distinct phases of c-Gd2O3NPs, with prominent reflections in the cubic phase and additional reflections in the monoclinic phase. Utilizing a second harmonic wavelength (532 nm) results in higher laser fluence compared to the fundamental wavelength (1064 nm), leading to more efficient ablation and fragmentation. This produces smaller, more uniform nanoparticles with enhanced optical properties, such as increased absorbance and transmittance. The 532 nm wavelength notably influences NPs size and shape, resulting in smaller particles with controlled size distribution and morphology. This modification leads to distinct absorbance and transmittance characteristics, often causing a blue shift in the absorption edge due to the quantum confinement effect, where the energy band gap increases as particle size decreases. These findings contribute to refining the synthesis process and enhancing the understanding of the mechanisms governing NP formation. This knowledge guides the synthesis procedure and harnesses tailored features of c-Gd2O3NPs for improved performance in various applications. Graphical abstract
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-024-00783-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00783-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-024-00783-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().