Diffusion on assortative networks: from mean-field to agent-based, via Newman rewiring
L. Lucchio () and
G. Modanese ()
Additional contact information
L. Lucchio: Free University of Bozen-Bolzano Faculty of Engineering
G. Modanese: Free University of Bozen-Bolzano Faculty of Engineering
The European Physical Journal B: Condensed Matter and Complex Systems, 2024, vol. 97, issue 10, 1-15
Abstract:
Abstract In mathematical models of epidemic diffusion on networks based upon systems of differential equations, it is convenient to use the heterogeneous mean field approximation (HMF) because it allows to write one single equation for all nodes of a certain degree k, each one virtually present with a probability given by the degree distribution P(k). The two-point correlations between nodes are defined by the matrix P(h|k), which can typically be uncorrelated, assortative or disassortative. After a brief review of this approach and of the results obtained within this approximation for the Bass diffusion model, in this work, we look at the transition from the HMF approximation to the description of diffusion through the dynamics of single nodes, first still with differential equations, and then with agent-based models. For this purpose, one needs a method for the explicit construction of ensembles of random networks or scale-free networks having a pre-defined degree distribution (configuration model) and a method for rewiring these networks towards some desired or “target” degree correlations (Newman rewiring). We describe Python-NetworkX codes implemented for the two methods in our recent work and compare some of the results obtained in the HMF approximation with the new results obtained with statistical ensembles of real networks, including the case of signed networks. Graphic abstract
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-024-00797-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00797-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-024-00797-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().