Periodic boundary condition effects in small-world networks
Yann Lucas Silva () and
Ariadne Andrade Costa ()
Additional contact information
Yann Lucas Silva: Universidade Federal de Jataí
Ariadne Andrade Costa: Universidade Federal de Jataí
The European Physical Journal B: Condensed Matter and Complex Systems, 2024, vol. 97, issue 7, 1-9
Abstract:
Abstract Understanding boundary conditions is crucial for properly modeling interactions and constraints within a system. In particular, periodic boundary conditions play an important role, because they allow systems to be treated as if existing in a continuous, constraint-free space, with significant relevance across diverse scientific fields. Our study explores the effects of periodic boundary conditions on Small-World networks by comparing traditional and flat versions derived from Ring and Line networks, respectively, through comparisons of network metrics and disconnection assessments. Recognizing the critical role of network topology in the behavior of dynamical models, we use an epidemic model to show that the structure of a network can either facilitate or hinder the spread of disease, emphasizing the importance of boundary conditions on these dynamics. The faster spread of disease in Ring networks, with shorter Average Shortest Paths, as well as their resilience on keeping network connectivity under rewiring, illustrate the impact that periodic boundary conditions can have on epidemic scenarios. Graphic Abstract
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-024-00746-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:97:y:2024:i:7:d:10.1140_epjb_s10051-024-00746-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-024-00746-9
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().