A new memristive map neuron, self-regulation and coherence resonance
Binchi Wang,
Xiaofeng Zhang (),
Zhigang Zhu and
Guodong Ren
Additional contact information
Binchi Wang: Lanzhou University of Technology
Xiaofeng Zhang: Lanzhou University of Technology
Zhigang Zhu: Lanzhou University of Technology
Guodong Ren: Lanzhou University of Technology
The European Physical Journal B: Condensed Matter and Complex Systems, 2024, vol. 97, issue 8, 1-12
Abstract:
Abstract Activation of firing patterns requires continuous energy exchange between magnetic and electric field in the neurons. Complexity of ion channels supports energy diversity among capacitive, inductive and memristive channel, and then the Calcium, sodium and potassium flows are pumped and diffused to trigger suitable firing modes in the neural activities. In this work, a magnetic flux-controlled memristor connected with an inductor in series is used to describe the physical effect of propagated ions, and an additive nonlinear resistor and a capacitor are connected to design a simple neural circuit. A memristive neuron model is suggested for dynamical analysis and energy description. Furthermore, linear transformation including time scale is used to convert this memristive oscillator into an equivalent memristive map. Energy function is given for this memristive map and an adaptive control law is used to control the mode transition in this map neuron. Furthermore, coherence resonance is discussed under noisy disturbance. Graphical abstract
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-024-00760-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:97:y:2024:i:8:d:10.1140_epjb_s10051-024-00760-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-024-00760-x
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().