Typicality, entropy and the generalization of statistical mechanics
Bernat Corominas-Murtra (),
Rudolf Hanel () and
Petr Jizba ()
Additional contact information
Bernat Corominas-Murtra: University Graz
Rudolf Hanel: Complexity Science Hub Vienna
Petr Jizba: Czech Technical University in Prague
The European Physical Journal B: Condensed Matter and Complex Systems, 2024, vol. 97, issue 8, 1-13
Abstract:
Abstract When at equilibrium, large-scale systems obey conventional thermodynamics because they belong to microscopic configurations (or states) that are typical. Crucially, the typical states usually represent only a small fraction of the total number of possible states, and yet the characterization of the set of typical states—the typical set—alone is sufficient to describe the macroscopic behavior of a given system. Consequently, the concept of typicality, and the associated Asymptotic Equipartition Property allow for a drastic reduction of the degrees of freedom needed for system’s statistical description. The mathematical rationale for such a simplification in the description is due to the phenomenon of concentration of measure. The later emerges for equilibrium configurations thanks to very strict constraints on the underlying dynamics, such as weekly interacting and (almost) independent system constituents. The question naturally arises as to whether the concentration of measure and related typicality considerations can be extended and applied to more general complex systems, and if so, what mathematical structure can be expected in the ensuing generalized thermodynamics. In this paper, we illustrate the relevance of the concept of typicality in the toy model context of the “thermalized” coin and show how this leads naturally to Shannon entropy. We also show an intriguing connection: The characterization of typical sets in terms of Rényi and Tsallis entropies naturally leads to the free energy and partition function, respectively, and makes their relationship explicit. Finally, we propose potential ways to generalize the concept of typicality to systems where the standard microscopic assumptions do not hold. Graphical abstract
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-024-00764-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:97:y:2024:i:8:d:10.1140_epjb_s10051-024-00764-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-024-00764-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().