EconPapers    
Economics at your fingertips  
 

Higher-order categorical coherence breakdown: a geometric framework for nonlinear quantum mechanics and its applications to strongly correlated electron systems

Andrei T. Patrascu ()
Additional contact information
Andrei T. Patrascu: FAST Foundation

The European Physical Journal B: Condensed Matter and Complex Systems, 2025, vol. 98, issue 10, 1-29

Abstract: Abstract We introduce a higher quantum mechanics whose fundamental structure arises from the breakdown of categorical coherence beyond the first order. In our formulation, standard quantum mechanics itself emerges from first-order categorical coherence breakdown, corresponding to the familiar non-commutativity of observables and described geometrically by the Uhlmann gauge connection on the purification bundle. By promoting this to a higher categorical and higher gauge framework, we show that breakdown at higher coherence levels corresponds to the emergence of higher Uhlmann curvatures-geometric obstruction classes whose state-dependent structure induces intrinsic nonlinearities in the quantum equations of motion. We provide a concrete categorical model based on a 2-category of contexts generated by projective-valued measures (PVMs) with coarse-grainings, construct the Uhlmann bundle-gerbe over the manifold of full-rank density operators, and compute its Deligne class. A rigorous transgression functor from the path 2-groupoid of contexts to the holonomy 2-group of the gerbe yields curvature-weighted Magnus/Chen expansions, from which we derive explicit nonlinear correction functionals $$\mathcal {N}_{j}[\rho ]$$ N j [ ρ ] for æ =2,3. These nonlinear terms are the direct quantum-mechanical analog of interaction terms in gauge field theory, but arise here from multi-way measurement incompatibilities rather than external interactions. We argue that this higher-order geometric structure provides a natural theoretical framework for regimes where standard linear quantum mechanics is insufficient-particularly in quantum chemistry, multi-electron strongly correlated systems, and nonadiabatic dynamics at conical intersections. Applications are discussed for catalytic processes, chaotic electron dynamics, and materials with strong electron correlation, where our theory predicts experimentally testable deviations from linear quantum predictions. Graphical abstract

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-025-01062-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:98:y:2025:i:10:d:10.1140_epjb_s10051-025-01062-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-025-01062-6

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-10-11
Handle: RePEc:spr:eurphb:v:98:y:2025:i:10:d:10.1140_epjb_s10051-025-01062-6