A four-terminal thermoelectric heat engine based on three coupled quantum dots
Quanlin Cao and
Jizhou He ()
Additional contact information
Quanlin Cao: Nanchang University, Nanchang
Jizhou He: Nanchang University, Nanchang
The European Physical Journal B: Condensed Matter and Complex Systems, 2025, vol. 98, issue 6, 1-10
Abstract:
Abstract A four-terminal thermoelectric heat engine model based on three capacitively coupled quantum dots is proposed. This system comprises two thermal reservoirs, three interconnected quantum dots, and left/right electron reservoirs. Using master equation theory, we derive analytical expressions for heat flows and electron currents between the quantum dots and their respective reservoirs. Numerical simulations reveal three different operating regimes for which the efficiency is defined as the ratio of power to absorbed heat. We focus on the regime where the heat engine generates output power by utilizing thermal energy from both reservoirs. The effects of key parameters—including temperature gradients, applied voltages, energy levels, and Coulomb charging energies—on the system’s performance are systematically analyzed. Results demonstrate that optimal power output and efficiency at maximum power can be achieved through parameter tuning. This work provides theoretical insights for designing high-performance nanoscale thermoelectric devices. Graphical abstract
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-025-00977-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:98:y:2025:i:6:d:10.1140_epjb_s10051-025-00977-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-025-00977-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().