Insight into the optoelectronic and thermochemical properties of LiXY2 (X = Ga, Ti; Y = S, Se, Te): a DFT study
Saloni Saloni,
Prabhat Ranjan () and
Tanmoy Chakraborty ()
Additional contact information
Saloni Saloni: Sharda University
Prabhat Ranjan: Manipal University Jaipur
Tanmoy Chakraborty: Sharda University
The European Physical Journal B: Condensed Matter and Complex Systems, 2025, vol. 98, issue 8, 1-16
Abstract:
Abstract Structure, optoelectronic, and thermochemical characteristics of Li-based chalcopyrite materials LiXY2 (X = Ga, Ti; Y = S, Se, Te) are studied using DFT approach. Geometry optimization and modeling of LiXY2 are performed using several functionals like B3LYP/LANL2DZ, B3LYP/SDD, B3LYP/DEF2TZVP, CAM-B3LYP/LANL2DZ, CAM-B3LYP/SDD, CAM-B3LYP/DEF2TZVP, APFD/LANL2DZ, APFD/SDD, and APFD/DEF2TZVP within DFT framework and made a comparative analysis. It is found that functional B3LYP/DEF2TZVP provides the most suitable result. Using B3LYP/DEF2TZVP, the HOMO–LUMO gaps of LiGaS2, LiGaSe2 and LiGaTe2 are determined as 3.34, 3.08, and 2.72 eV, respectively, whereas for LiTiS2, LiTiSe2, and LiTiTe2, it is found as 2.71, 2.77, and 1.79 eV correspondingly, signifying their possible uses in optoelectronic devices and solar cells. It also specifies that the replacement of Ga with Ti in the host materials helps in the reduction of the energy gap, which exhibits its better absorption ability. The vertical ionization potential (VIP) as well as vertical electron affinity (VEA) of LiTiY2 are found lesser in magnitude in comparison with LiGaY2. LiTiTe2 exhibits the lowest VIP, whereas LiGaTe2 displays the maximum VEA, which indicates that LiTiTe2 and LiGaTe2 are suitable materials for hole and electron infusion, respectively. LiGaY2 shows a high electronegativity as compared to LiTiY2, which indicates that LiGaY2 offers advantages to enhance electron and hole mobility. The refractive index for LiGaY2 increases from LiGaS2 to LiGaSe2 to LiGaTe2, while for LiTiY2, the highest and the lowest magnitudes are observed for LiTiTe2 and LiTiSe2, respectively. Thermochemical properties of LiXY2 are also computed. Graphical abstract
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-025-01022-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:98:y:2025:i:8:d:10.1140_epjb_s10051-025-01022-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-025-01022-0
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().