EconPapers    
Economics at your fingertips  
 

Relationships among return and liquidity of cryptocurrencies

Mianmian Zhang, Bing Zhu (), Ziyuan Li (), Siyuan Jin and Yong Xia ()
Additional contact information
Mianmian Zhang: HSBC Lab - China
Bing Zhu: HSBC Lab - China
Ziyuan Li: HSBC Lab - China
Siyuan Jin: HSBC Lab - China
Yong Xia: HSBC Lab - China

Financial Innovation, 2024, vol. 10, issue 1, 1-30

Abstract: Abstract The cryptocurrency market is a complex and rapidly evolving financial landscape in which understanding the inter- and intra-asset dependencies among key financial variables, such as return and liquidity, is crucial. In this study, we analyze daily return and liquidity data for six major cryptocurrencies, namely Bitcoin, Ethereum, Ripple, Binance Coin, Litecoin, and Dogecoin, spanning the period from June 3, 2020, to November 30, 2022. Liquidity is estimated using three low-frequency proxies: the Amihud ratio and the Abdi and Ranaldo (AR) and Corwin and Schultz (CS) estimators. To account for autoregressive and persistent effects, we apply the autoregressive integrated moving average-generalized autoregressive conditional heteroscedasticity (ARIMA-GARCH) model and subsequently utilize the copula method to examine the interdependent relationships between the return on and liquidity of the six cryptocurrencies. Our analysis reveals strong cross-asset lower-tail dependence in return and significant cross-asset upper-tail dependence in illiquidity measures, with more pronounced dependence observed in specific cryptocurrency pairs, primarily involving Bitcoin, Ethereum, and Litecoin. We also observe that returns tend to be higher when liquidity is lower in the cryptocurrency market. Our findings have significant implications for portfolio diversification, asset allocation, risk management, and trading strategy development for investors and traders, as well as regulatory policy-making for regulators. This study contributes to a deeper understanding of the cryptocurrency marketplace and can help inform investment decision making and regulatory policies in this emerging financial domain.

Keywords: Cryptocurrency; Liquidity; Dependence structure; Stationary; ARIMA-GARCH model; Copula model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1186/s40854-023-00532-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00532-z

Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589

DOI: 10.1186/s40854-023-00532-z

Access Statistics for this article

Financial Innovation is currently edited by J. Leon Zhao and Zongyi

More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00532-z