EconPapers    
Economics at your fingertips  
 

A dynamic credit risk assessment model with data mining techniques: evidence from Iranian banks

Saba Moradi () and Farimah Mokhatab Rafiei ()
Additional contact information
Saba Moradi: Islamic Azad University
Farimah Mokhatab Rafiei: Tarbiat Modares University

Financial Innovation, 2019, vol. 5, issue 1, 1-27

Abstract: Abstract Giving loans and issuing credit cards are two of the main concerns of banks in that they include the risks of non-payment. According to the Basel 2 guidelines, banks need to develop their own credit risk assessment systems. Some banks have such systems; nevertheless they have lost a large amount of money simply because the models they used failed to accurately predict customers’ defaults. Traditionally, banks have used static models with demographic or static factors to model credit risk patterns. However, economic factors are not independent of political fluctuations, and as the political environment changes, the economic environment evolves with it. This has been especially evident in Iran after the 2008–2016 USA sanctions, as many previously reliable customers became unable to repay their debt (i.e., became bad customers). Nevertheless, a dynamic model that can accommodate fluctuating politico-economic factors has never been developed. In this paper, we propose a model that can accommodate factors associated with politico-economic crises. Human judgement is removed from the customer evaluation process. We used a fuzzy inference system to create a rule base using a set of uncertainty predictors. First, we train an adaptive network-based fuzzy inference system (ANFIS) using monthly data from a customer profile dataset. Then, using the newly defined factors and their underlying rules, a second round of assessment begins in a fuzzy inference system. Thus, we present a model that is both more flexible to politico-economic factors and can yield results that are max compatible with real-life situations. Comparison between the prediction made by proposed model and a real non-performing loan indicates little difference between them. Credit risk specialists also approve the results. The major innovation of this research is producing a table of bad customers on a monthly basis and creating a dynamic model based on the table. The latest created model is used for assessing customers henceforth, so the whole process of customer assessment need not be repeated. We assert that this model is a good substitute for the static models currently in use as it can outperform traditional models, especially in the face of economic crisis.

Keywords: Fuzzy clustering; Non-performing loan; Credit risk; FIS; Dynamism; ANFIS (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://link.springer.com/10.1186/s40854-019-0121-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:5:y:2019:i:1:d:10.1186_s40854-019-0121-9

Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589

DOI: 10.1186/s40854-019-0121-9

Access Statistics for this article

Financial Innovation is currently edited by J. Leon Zhao and Zongyi

More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:fininn:v:5:y:2019:i:1:d:10.1186_s40854-019-0121-9