Modeling and forecasting time series of precious metals: a new approach to multifractal data
Emrah Oral () and
Gazanfer Unal ()
Additional contact information
Emrah Oral: Istanbul Aydin University
Gazanfer Unal: Bahcesehir University
Financial Innovation, 2019, vol. 5, issue 1, 1-28
Abstract:
Abstract We introduce a novel approach to multifractal data in order to achieve transcended modeling and forecasting performances by extracting time series out of local Hurst exponent calculations at a specified scale. First, the long range and co-movement dependencies of the time series are scrutinized on time-frequency space using multiple wavelet coherence analysis. Then, the multifractal behaviors of the series are verified by multifractal de-trended fluctuation analysis and its local Hurst exponents are calculated. Additionally, root mean squares of residuals at the specified scale are procured from an intermediate step during local Hurst exponent calculations. These internally calculated series have been used to estimate the process with vector autoregressive fractionally integrated moving average (VARFIMA) model and forecasted accordingly. In our study, the daily prices of gold, silver and platinum are used for assessment. The results have shown that all metals do behave in phase movement on long term periods and possess multifractal features. Furthermore, the intermediate time series obtained during local Hurst exponent calculations still appertain the co-movement as well as multifractal characteristics of the raw data and may be successfully re-scaled, modeled and forecasted by using VARFIMA model. Conclusively, VARFIMA model have notably surpassed its univariate counterpart (ARFIMA) in all efficacious trials while re-emphasizing the importance of co-movement procurement in modeling. Our study’s novelty lies in using a multifractal de-trended fluctuation analysis, along with multiple wavelet coherence analysis, for forecasting purposes to an extent not seen before. The results will be of particular significance to finance researchers and practitioners.
Keywords: Continuous wavelet transform; Multiple wavelet coherence; Multifractal de-trended fluctuation analysis; Vector autoregressive fractionally integrated moving average; Forecast (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://link.springer.com/10.1186/s40854-019-0135-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:5:y:2019:i:1:d:10.1186_s40854-019-0135-3
Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589
DOI: 10.1186/s40854-019-0135-3
Access Statistics for this article
Financial Innovation is currently edited by J. Leon Zhao and Zongyi
More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().