Weighted-indexed semi-Markov model: calibration and application to financial modeling
Riccardo De Blasis ()
Additional contact information
Riccardo De Blasis: Marche Polytechnic University
Financial Innovation, 2023, vol. 9, issue 1, 1-16
Abstract:
Abstract We address the calibration issues of the weighted-indexed semi-Markov chain (WISMC) model applied to high-frequency financial data. Specifically, we propose to automate the discretization of the price returns and the volatility index by using four different approaches, two based on statistical quantities, namely, the quantile and sigma discretization, and two derived by the application of two popular machine learning algorithms, namely the k-means and Gaussian mixture model (GMM). Moreover, by comparing the Bayesian information criterion (BIC) scores, the GMM approach allows for the selection of the number of states of returns and index. An application to Bitcoin prices at 1-min and 1-s intervals shows the validity and usefulness of the proposed discretization approaches. In particular, GMM discretization is well suited for high-frequency returns, whereas the quantile approach works better for low-frequency intervals. Finally, by comparing the results of the Monte Carlo simulation, we show that the WISMC model, applied with the proposed discretization, can reproduce the long-range serial correlation of the squared returns, which is typical of the financial markets and, in particular, the cryptocurrency market.
Keywords: Semi-Markov; WISMC; Bitcoin; EWMA; k-means; GMM (search for similar items in EconPapers)
JEL-codes: C38 C63 G17 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1186/s40854-022-00418-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00418-6
Ordering information: This journal article can be ordered from
http://www.springer. ... nomics/journal/40589
DOI: 10.1186/s40854-022-00418-6
Access Statistics for this article
Financial Innovation is currently edited by J. Leon Zhao and Zongyi
More articles in Financial Innovation from Springer, Southwestern University of Finance and Economics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().