Optimal investment and price dependence in a semi-static market
Pietro Siorpaes ()
Finance and Stochastics, 2015, vol. 19, issue 1, 187 pages
Abstract:
This paper studies the problem of maximizing expected utility from terminal wealth in a semi-static market composed of derivative securities, which we assume can be traded only at time zero, and of stocks, which can be traded continuously in time and are modelled as locally bounded semimartingales. Using a general utility function defined on the positive half-line, we first study existence and uniqueness of the solution, and then we consider the dependence of the outputs of the utility maximization problem on the price of the derivatives, investigating not only stability but also differentiability, monotonicity, convexity and limiting properties. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Optimal investment; Convex duality; Incomplete markets; Price dependence; Well-posed problem; 91B16; 49N15; 91G10; G11 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00780-014-0245-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:finsto:v:19:y:2015:i:1:p:161-187
Ordering information: This journal article can be ordered from
http://www.springer. ... ance/journal/780/PS2
DOI: 10.1007/s00780-014-0245-8
Access Statistics for this article
Finance and Stochastics is currently edited by M. Schweizer
More articles in Finance and Stochastics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().