EconPapers    
Economics at your fingertips  
 

The infinite-horizon investment–consumption problem for Epstein–Zin stochastic differential utility. I: Foundations

Martin Herdegen (), David Hobson () and Joseph Jerome ()
Additional contact information
Martin Herdegen: University of Warwick
David Hobson: University of Warwick
Joseph Jerome: University of Liverpool

Finance and Stochastics, 2023, vol. 27, issue 1, No 4, 127-158

Abstract: Abstract The goal of this article is to provide a detailed introduction to infinite-horizon investment–consumption problems for agents with preferences described by Epstein–Zin (EZ) stochastic differential utility (SDU). In the setting of a Black–Scholes–Merton market, we seek to describe all parameter combinations that lead to a well-founded problem in the sense that the problem is not just mathematically well posed, but the solution is also economically meaningful. The key idea is to consider a novel and slightly different description of EZ SDU under which the aggregator has only one sign. This new formulation clearly highlights the necessity for the coefficients of relative risk aversion and of elasticity of intertemporal complementarity (the reciprocal of the coefficient of intertemporal substitution) to lie on the same side of unity.

Keywords: Epstein–Zin stochastic differential utility; Lifetime investment and consumption; Backward stochastic differential equations; Discounted aggregator; 49L20; 60H20; 91B16; 91G10; 91G80; 93E20 (search for similar items in EconPapers)
JEL-codes: C61 G11 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s00780-022-00495-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:finsto:v:27:y:2023:i:1:d:10.1007_s00780-022-00495-6

Ordering information: This journal article can be ordered from
http://www.springer. ... ance/journal/780/PS2

DOI: 10.1007/s00780-022-00495-6

Access Statistics for this article

Finance and Stochastics is currently edited by M. Schweizer

More articles in Finance and Stochastics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:finsto:v:27:y:2023:i:1:d:10.1007_s00780-022-00495-6