Combining syndromic surveillance and ILI data using particle filter for epidemic state estimation
Taesik Lee and
Hayong Shin ()
Additional contact information
Taesik Lee: KAIST
Hayong Shin: KAIST
Flexible Services and Manufacturing Journal, 2016, vol. 28, issue 1, No 11, 233-253
Abstract:
Abstract Designing effective mitigation strategies against influenza outbreak requires an accurate prediction of a disease’s future course of spreading. Real time information such as syndromic surveillance data and influenza-like-illness (ILI) reports by clinicians can be used to generate estimates of the current state of spreading of a disease. Syndromic surveillance data are immediately available, in contrast to ILI reports that require data collection and processing. On the other hand, they are less credible than ILI data because they are essentially behavioral responses from a community. In this paper, we present a method to combine immediately-available-but-less-reliable syndromic surveillance data with reliable-but-time-delayed ILI data. This problem is formulated as a non-linear stochastic filtering problem, and solved by a particle filtering method. Our experimental results from hypothetical pandemic scenarios show that state estimation is improved by utilizing both sets of data compared to when using only one set. However, the amount of improvement depends on the relative credibility and length of delay in ILI data. An analysis for a linear, Gaussian case is presented to support the results observed in the experiments.
Keywords: Epidemic; Syndromic surveillance; Particle filter; Data fusion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10696-014-9204-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:flsman:v:28:y:2016:i:1:d:10.1007_s10696-014-9204-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10696
DOI: 10.1007/s10696-014-9204-0
Access Statistics for this article
Flexible Services and Manufacturing Journal is currently edited by Hans Günther
More articles in Flexible Services and Manufacturing Journal from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().