A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment
Lean Yu (),
Zebin Yang and
Ling Tang ()
Additional contact information
Zebin Yang: Beijing University of Chemical Technology
Ling Tang: Beijing University of Chemical Technology
Flexible Services and Manufacturing Journal, 2016, vol. 28, issue 4, No 3, 576-592
Abstract:
Abstract To achieve high assessment accuracy for credit risk, a novel multistage deep belief network (DBN) based extreme learning machine (ELM) ensemble learning methodology is proposed. In the proposed methodology, three main stages, i.e., training subsets generation, individual classifiers training and final ensemble output, are involved. In the first stage, bagging sampling algorithm is applied to generate different training subsets for guaranteeing enough training data. Second, the ELM, an effective AI forecasting tool with the unique merits of time-saving and high accuracy, is utilized as the individual classifier, and diverse ensemble members can be accordingly formulated with different subsets and different initial conditions. In the final stage, the individual results are fused into final classification output via the DBN model with sufficient hidden layers, which can effectively capture the valuable information hidden in ensemble members. For illustration and verification, the experimental study on one publicly available credit risk dataset is conducted, and the results show the superiority of the proposed multistage DBN-based ELM ensemble learning paradigm in terms of high classification accuracy.
Keywords: Credit risk assessment; Deep belief network; Ensemble learning; Extreme learning machine (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s10696-015-9226-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:flsman:v:28:y:2016:i:4:d:10.1007_s10696-015-9226-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10696
DOI: 10.1007/s10696-015-9226-2
Access Statistics for this article
Flexible Services and Manufacturing Journal is currently edited by Hans Günther
More articles in Flexible Services and Manufacturing Journal from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().