EconPapers    
Economics at your fingertips  
 

Properties of quasi-Boolean function on quasi-Boolean algebra

Yang-jin Cheng () and Lin-xi Xu
Additional contact information
Yang-jin Cheng: Xiangtan University
Lin-xi Xu: Xiangtan University

Fuzzy Information and Engineering, 2011, vol. 3, issue 3, 275-291

Abstract: Abstract In this paper, we investigate the following problem: give a quasi-Boolean function Ψ(x 1, …, x n ) = (a ∧ C) ∨ (a 1 ∧ C 1) ∨ … ∨ (a p ∧ C p ), the term (a ∧ C) can be deleted from Ψ(x 1, …, x n )? i.e., (a ∧ C) ∨ (a 1 ∧ C 1) ∨ … ∨ (a p ∧ C p ) = (a 1 ∧ C 1) ∨ … ∨ (a p ∧ C p )? When a = 1: we divide our discussion into two cases. (1) ℑ1(Ψ,C) = ø, C can not be deleted; ℑ1(Ψ,C) ≠ ø, if S i 0 ≠ ø (1 ≤ i ≤ q), then C can not be deleted, otherwise C can be deleted. When a = m: we prove the following results: (m∧C)∨(a 1∧C 1)∨…∨(a p ∧C p ) = (a 1∧C 1)∨…∨(a p ∧C p ) ⇔ (m ∧ C) ∨ C 1 ∨ … ∨C p = C 1 ∨ … ∨C p . Two possible cases are listed as follows, (1) ℑ2(Ψ,C) = ø, the term (m∧C) can not be deleted; (2) ℑ2(Ψ,C) ≠ ø, if (∃i 0) such that $S'_{i_0 } $ = ø, then (m∧C) can be deleted, otherwise ((m∧C)∨C 1∨…∨C q )(v 1, …, v n ) = (C 1 ∨ … ∨ C q )(v 1, …, v n )(∀(v 1, …, v n ) ∈ L 3 n ) ⇔ (C 1 ′ ∨ … ∨ C q ′ )(u 1, …, u q ) = 1(∀(u 1, …, u q ) ∈ B 2 n ).

Keywords: Lattice; Boolean function; Quasi-Boolean algebra; Quasi-Boolean function (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12543-011-0083-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:fuzinf:v:3:y:2011:i:3:d:10.1007_s12543-011-0083-8

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/12543

DOI: 10.1007/s12543-011-0083-8

Access Statistics for this article

More articles in Fuzzy Information and Engineering from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:fuzinf:v:3:y:2011:i:3:d:10.1007_s12543-011-0083-8