An intelligent lung tumor diagnosis system using whale optimization algorithm and support vector machine
Surbhi Vijh (),
Deepak Gaur () and
Sushil Kumar ()
Additional contact information
Surbhi Vijh: Amity University
Deepak Gaur: Amity University
Sushil Kumar: National Institute of Technology Warangal
International Journal of System Assurance Engineering and Management, 2020, vol. 11, issue 2, No 12, 374-384
Abstract:
Abstract Medical image processing technique are widely used for detection of tumor to increase the survival rate of patients. The development of computer-aided diagnosis system shows improvement in observing the medical image and determining the treatment stages. The earlier detection of tumor reduces the mortality of lung cancer by increasing the probability of successful treatment. In this paper, the intelligent lung tumor diagnosis system is developed using various image processing technique. The simulated steps involve image enhancement, image segmentation, post-processing, feature extraction, feature selection and classification using support vector machine (SVM) kernel. Gray level co-occurrence matrix method is used for extracting the 19 texture and statistical features of lung computed tomography (CT) image. Whale optimization algorithm (WOA) is considered for selection of best prominent feature subset. The contribution provided in this paper is the development of WOA_SVM to automate the aided diagnosis system for determining whether the lung CT image is normal or abnormal. An improved technique is developed using whale optimization algorithm for optimal feature selection to obtain accurate results and constructing the robust model. The performance of proposed methodology is evaluated using accuracy, sensitivity and specificity and obtained as 95%, 100% and 92% using radial bias function support vector kernel.
Keywords: Lung tumor; Global thresholding; Gray level co-occurrence matrix; Whale optimization algorithm; Support vector machine (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-019-00866-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-019-00866-x
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-019-00866-x
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().