EconPapers    
Economics at your fingertips  
 

Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environment

Dilip Mandloi (), Rajeev Arya () and Ajit K. Verma ()
Additional contact information
Dilip Mandloi: National Institute of Technology Patna
Rajeev Arya: National Institute of Technology Patna
Ajit K. Verma: Western Norway University of Applied Sciences

International Journal of System Assurance Engineering and Management, 2021, vol. 12, issue 5, No 11, 990-1000

Abstract: Abstract Finding a safe and optimum path from the source node to the target node, while preventing collisions with environmental obstacles, is always a challenging task. This task becomes even more complicated when the application area includes Unmanned Aerial Vehicle (UAV). This is because UAV follows an aerial path to reach the target node from the source node and the aerial paths are defined in 3D space. A* (A-star) algorithm is the path planning strategy of choice to solve path planning problem in such scenarios because of its simplicity in implementation and promise of optimality. However, A* algorithm guarantees to find the shortest path on graphs but does not guarantee to find the shortest path in a real continuous environment. Theta* (Theta-star) and Lazy Theta* (Lazy Theta-star) algorithms are variants of the A* algorithm that can overcome this shortcoming of the A* algorithm at the cost of an increase in computational time. In this research work, a comparative analysis of A-star, Theta-star, and Lazy Theta-star path planning strategies is presented in a 3D environment. The ability of these algorithms is tested in 2D and 3D scenarios with distinct dimensions and obstacle complexity. To present comparative performance analysis of considered algorithms two performance metrices are used namely computational time which is a measure of time taken to generate the path and path length which represents the length of the generated path.

Keywords: UAV; A-star; Theta-star; Lazy Theta-star; 3D environment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01186-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01186-9

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-021-01186-9

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01186-9