EconPapers    
Economics at your fingertips  
 

BoostNet: a method to enhance the performance of deep learning model on musculoskeletal radiographs X-ray images

Pawan Kumar Mall () and Pradeep Kumar Singh ()
Additional contact information
Pawan Kumar Mall: Madan Mohan Malaviya University of Technology
Pradeep Kumar Singh: Madan Mohan Malaviya University of Technology

International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 1, No 66, 658-672

Abstract: Abstract In clinical treatment, deep learning plays a pivotal role in medical image classification. Deep learning techniques provide opportunities for radiologists and orthopedic to ease out their lives with faster and more accurate results. The traditional deep learning approach nevertheless reached its performance ceiling. Therefore, in this paper, we investigate different enhancement techniques to boost the deep neural networks performance and provide a solution as BoostNet. The experiment is categorized into four different phases. We have selected ChampNet from benchmark deep learning models (EfficientNet: B0, MobileNet, ResNet18, VGG19). This phase helps to obtain the best model. In the second phase, The ChampNet evaluates with different resolution datasets. This phase helps to finalize the dataset resolution to enhance the performance of ChampNet. In the third phase, Champ-Net merges with image enhancement techniques, Contrast Limited Adaptive Histogram Equalization (CLAHE), High-frequency filtering (HEF), and Unsharp masking (UM). This phase helps to obtain Boost-Net with enriched performance. The last phase helps us to verify BoostNet results with Lightness Order Error. The presented research work fuses the image enhancement technique with ChampNet to generate BoostNet models. An assessment was performed on the Musculoskeletal Radiograph Bone Classification using classification schemes to demonstrate the proposed model's performance. The Classification accuracy of BoostNet was for the train a test dataset with and without enhancement techniques. The proposed model ChampNet + CLAHE, ChampNet + HEF, ChampNet + UM approach achieved 95.88%, 94.99%, and 94.18% accuracy, respectively. This experiment leads to a more accurate and efficient classification model. The main aim of this paper is to enhance techniques to boost the deep neural networks performance and provide a solution as BoostNet.

Keywords: Classification; Deep Learning (DL); Image Enhancement; Musculoskeletal Radiograph; Medical Image (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01580-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01580-3

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-021-01580-3

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01580-3