EconPapers    
Economics at your fingertips  
 

Path loss predictions for fringe areas using adaptive neuro-fuzzy inference system

Akansha Gupta (), Kamal Ghanshala and R. C. Joshi
Additional contact information
Akansha Gupta: Graphic Era Deemed to be University
Kamal Ghanshala: Graphic Era Deemed to be University
R. C. Joshi: Graphic Era Deemed to be University

International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 2, No 9, 866-879

Abstract: Abstract Path loss prediction is an essential technique in wireless radio network designing and development, it supports in perceiving the nature of electromagnetic radio signals in a particularized transmission medium. Varieties of empirical path loss prediction models are available for path loss calculations, but these models are complex and require information regarding environmental conditions for accurate prediction. In this paper, an Adaptive Neuro-Fuzzy Inference System (ANFIS) is explored for the prediction of path loss for multi-transmitter radio wave propagation. A drive test has been conducted for field measurement at Uttarakhand collecting RSSI (Received Signal Strength Indicator) from an individual transmitter. The frequency of transmission of each transmitter is 1800 MHz respectively. An elementary four-layer ANFIS architecture has been optimally trained using RSSI data to accurately map the input values to the equivalent path loss values. The membership function is selected to provide an enhanced and stable mapping of the input to the corresponding output at the lowest number of epochs. The ANFIS model predicts the minimum value of Root Mean Square Error (RMSE) as compared to other path loss models. The obtained ANFIS model also validated a good generalization capability when deployed at a similar terrain. Developed path loss model exhibits desirable qualities for radio network planning i.e. simplicity, accuracy, and better generalization ability which is important for radio coverage prediction.

Keywords: ANFIS; RSSI; RMSE; SUI; ECC-33 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01196-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01196-7

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-021-01196-7

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01196-7