EconPapers    
Economics at your fingertips  
 

Effective software defect prediction using support vector machines (SVMs)

Somya Goyal ()
Additional contact information
Somya Goyal: Manipal University Jaipur

International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 2, No 11, 696 pages

Abstract: Abstract Software defect prediction (SDP) plays a key role in the timely delivery of good quality software product. In the early development phases, it predicts the error-prone modules which can cause heavy damage or even failure of software in the future. Hence, it allows the targeted testing of these faulty modules and reduces the total development cost of the software ensuring the high quality of end-product. Support vector machines (SVMs) are extensively being used for SDP. The condition of unequal count of faulty and non-faulty modules in the dataset is an obstruction to accuracy of SVMs. In this work, a novel filtering technique (FILTER) is proposed for effective defect prediction using SVMs. Support vector machine (SVM) based classifiers (linear, polynomial and radial basis function) are designed utilizing the proposed filtering technique over five datasets and their performances are evaluated. The proposed FILTER enhances the performance of SVM based SDP model by 16.73%, 16.80% and 7.65% in terms of accuracy, AUC and F-measure respectively.

Keywords: Defect prediction; Class imbalance; Support vector machine (SVM); ROC; AUC; F-measure (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01326-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01326-1

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-021-01326-1

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01326-1