EconPapers    
Economics at your fingertips  
 

Fault diagnosis of antifriction bearing in internal combustion engine gearbox using data mining techniques

K. N. Ravikumar, Suhas S. Aralikatti, Hemantha Kumar (), G. N. Kumar and K. V. Gangadharan
Additional contact information
K. N. Ravikumar: National Institute of Technology Karnataka
Suhas S. Aralikatti: National Institute of Technology Karnataka
Hemantha Kumar: National Institute of Technology Karnataka
G. N. Kumar: National Institute of Technology Karnataka
K. V. Gangadharan: National Institute of Technology Karnataka

International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 3, No 7, 1134 pages

Abstract: Abstract Ball bearing failure are most common failure in rotating machinery, which can be catastrophic. Hence obtaining early failure warning along with precise fault detection technique is at most important. Early detection and timely intervention are the key in condition monitoring for long term endurance of machine components. The early research has used signal processing and spectral analysis extensively for fault detection however data mining with machine learning is most effective in fault diagnosis, the same is presented in this paper. The vibration signals are acquired for an output shaft antifriction bearing in a two-wheeler gearbox operated at various loading conditions with healthy and fault conditions. Data mining is employed for these acquired signals. Statistical, discrete wavelet and empirical mode decomposition are employed for feature extraction process and J48 decision tree for feature selection. Classification is carried out using K*, Random forest and support vector machine algorithm. The classifiers are trained and tested using tenfold cross validation method to diagnose the bearing fault. A comparative study of feature extraction and classifiers are done to evaluate the classification accuracy. The results obtained from K* classifier with wavelet feature yielded better accuracy than rest other classifiers with classification accuracy 92.5% for bearing fault diagnosis.

Keywords: Ball bearing; Data mining techniques; IC engine; Gearbox (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01407-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01407-1

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-021-01407-1

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01407-1