Stratified linear systematic sampling based clustering approach for detection of financial risk group by mining of big data
Kamlesh Kumar Pandey () and
Diwakar Shukla ()
Additional contact information
Kamlesh Kumar Pandey: Dr. Hari singh Gour Vishwavidyalaya
Diwakar Shukla: Dr. Hari singh Gour Vishwavidyalaya
International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 3, No 17, 1239-1253
Abstract:
Abstract Risk analysis is one of the most essential business activities because it discovers unknown risks such as financial risk, recovery risk, investment risk, operational risk, credit risk, debit risk, and so on. Clustering is a data mining technique that uses data behavior and nature to discover unexpected risks in business data. In a big data setup, clustering algorithms encounter execution time and cluster quality-related challenges due to the primary attribute of big data. This study suggests a Stratified Systematic Sampling Extension (SSE) approach for risk analysis in big data mining using a single machine execution by clustering methodology. Sampling is a data reduction technique that saves computation time and improves cluster quality, scalability, and speed of the clustering algorithm. The proposed sampling plan first formulates the stratum by selecting the minimum variance dimension and then selects samples from each stratum using random linear systematic sampling. The clustering algorithm produces robust clusters in terms of risk and non-risk group with the help of sample data and extends the sample-based clustering results to final clustering results utilizing Euclidean distance. The performance of the SSE-based clustering algorithm has been compared to existing K-means and K-means ++ algorithms using Davies Bouldin score, Silhouette coefficient, Scattering Density between clusters Validity, Scattering Distance Validity and CPU time validation metrics on financial risk datasets. The experimental results demonstrate that the SSE-based clustering algorithm achieved better clustering objectives in terms of cluster compaction, separation, density, and variance while minimizing iterations, distance computation, data comparison, and computational time. The statistical analysis reveals that the proposed sampling plan attained statistical significance by employing the Friedman test.
Keywords: Risk Clustering; Sampling; Big data clustering; Stratified sampling; Systematic sampling; Sample extension; SSE-K means; SSE-K means ++; Robust risk clusters (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01424-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01424-0
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01424-0
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().