EconPapers    
Economics at your fingertips  
 

An ensemble model to optimize modularity in dynamic bipartite networks

Neelu Chaudhary (), Hardeo Kumar Thakur () and Rinky Dwivedi ()
Additional contact information
Neelu Chaudhary: Manav Rachna University
Hardeo Kumar Thakur: Manav Rachna University
Rinky Dwivedi: Maharaja Surajmal Institute of Technology

International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 5, No 11, 2248-2260

Abstract: Abstract Distinct non-random quantitative interactions at diverse timestamps formulate real-world dynamic complex networks. The most frequently used class of methods for discovering communities in dynamic networks is modularity optimization that evaluates the quality of the partition of network nodes into distinct communities. The bipartite networks have bipartite modularity and bipartite modularity optimization respectively. Newman's modularity is a consistently used algorithm to evaluate modules of unipartite networks yet it is ineffective for assessing the division of bipartite networks with two types of vertices. Many community detection methods suggest bipartite modularity to accommodate this issue. They usually employ information about the existence or lack of interactions between nodes. In quantitative networks, weighted modularity is a potential approach for measuring the quality of community partitions (Lu et al. IEEE, 179–184, 2013). This study offers an ensemble model for detecting one-mode communities and optimizing modularity in dynamic bipartite weighted networks. By using collaborative weighted projection, bipartite networks get projected into two weighted one-mode networks. The results of experiments both on real-world dynamic network data and synthetic data demonstrate that the modularity of the method is significantly greater than that of current techniques and the communities discovered contain vertices of comparable kinds exhibiting the suggested algorithm's performance is ample.

Keywords: Dynamic networks; Bipartite modularity; One-mode projection; Communities; Clustering coefficient (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01633-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:5:d:10.1007_s13198-022-01633-1

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-022-01633-1

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:13:y:2022:i:5:d:10.1007_s13198-022-01633-1