EconPapers    
Economics at your fingertips  
 

Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier

Swapnil K. Gundewar () and Prasad V. Kane ()
Additional contact information
Swapnil K. Gundewar: Visvesvaraya National Institute of Technology
Prasad V. Kane: Visvesvaraya National Institute of Technology

International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 6, No 6, 2876-2894

Abstract: Abstract Bearings are the principal component in the induction motor responsible for 50–60% of faults in an induction motor. Hence, detecting and diagnosing bearing faults in an induction motor is essential for reliable operation. Some soft computing techniques like artificial intelligence-based classifiers are always useful in fault diagnosis. This research diagnoses the bearing fault under three vibration signal conditions: raw vibration signal, filtered vibration signal, and wavelet-based denoised vibration signal. The statistical features such as RMS, kurtosis, standard deviation, variance, etc., are extracted from each condition. The db2 wavelet is selected based on the minimum Shannon entropy criteria for the wavelet denoising. Vibration signal data is collected from the experimental setup for four bearing conditions: healthy, outer race defect, ball defect, and cage defect. Total 1600 samples are collected from 2,000,000 data points for each condition. An artificial neural network and discriminant classifier are trained and tested for fault identification. Two other classifiers from each pedigree, i.e., support vector machine and radial basis function neural network, are also analyzed to compare the classification performance. It is observed that the ANN classifier stands the best among all, with a classification accuracy of 99.58% and a minimum computational time of 1.62 s.

Keywords: Artificial intelligence; Artificial neural network; Bearing fault diagnosis; Discriminant classifier; Support vector machines (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01757-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:6:d:10.1007_s13198-022-01757-4

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-022-01757-4

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:13:y:2022:i:6:d:10.1007_s13198-022-01757-4