Image dehazing using autoencoder convolutional neural network
Richa Singh (),
Ashwani Kumar Dubey () and
Rajiv Kapoor ()
Additional contact information
Richa Singh: Amity University Uttar Pradesh
Ashwani Kumar Dubey: Amity University Uttar Pradesh
Rajiv Kapoor: Delhi Technological University
International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 6, No 16, 3002-3016
Abstract:
Abstract In hazy weather, the image in the scene suffers from noise which makes them less visible and to detect an object in hazy weather becomes a challenging task in computer vision. To have noise free image, many researchers have devised denoising techniques for enhancing visibility of images. Denoising is to remove the random variation from images and preserve the image features. As hazy images cause lots of visibility issues, this paper proposes removing haze and enhancing visibility of bad weather images with improved efficacy using an unsupervised neural network autoencoder that compress the data using machine learning and learns through Convolutional Neural Network (CNN). It has been observed that to have increased accuracy, the image classification and analysis is most effective using CNN. An end-to-end decoder training model is used to achieve the quality images. Further, various optimizers are compared to have better accuracy. The quality of images identified by estimation of performance such as RMSE and PSNR values are evaluated over single image and images from existing datasets and our own dataset. In the proposed method, RMSE value comes out to be 0.0373 for image from BSD500 dataset for specific image compared with other state of art approaches. The proposed model is intended in addition to other active, or progressive methods and the suggested method exceeds. The performance quality of images is explored applying measurable metrics. The images are taken from the datasets O-Haze, I-Haze, BSDS500, RESIDE, FRIDA and some from google.
Keywords: Convolutional neural network; Neural network; Deep neural network; Rectified linear unit; Autoencoder (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01780-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:6:d:10.1007_s13198-022-01780-5
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-022-01780-5
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().