Glowworm Swarm Optimization (GSO) based energy efficient clustered target coverage routing in Wireless Sensor Networks (WSNs)
Ridhi Kapoor () and
Sandeep Sharma ()
Additional contact information
Ridhi Kapoor: Guru Nanak Dev University
Sandeep Sharma: Guru Nanak Dev University
International Journal of System Assurance Engineering and Management, 2023, vol. 14, issue 2, No 5, 622-634
Abstract:
Abstract The Wireless Sensor Networks is a wireless system comprising uniformly distributed, autonomous smart sensors for physical or environmental surveillance. Being extremely resource-restricted, the major concern over the network is efficient energy consumption wherein network sustainability is reliant on the transmittance, processing rate, and the acquisition and dissemination of sensed data. Energy conservation entails reducing transmission overheads and can be achieved by incorporating energy-efficient routing and clustering techniques. Accomplishing the desired objective of minimizing energy dissipation thereby enhancing the network’s lifespan can be perceived as an optimization problem. In the current era, nature-inspired meta-heuristic algorithms are being widely used to solve various optimization problems. In this context, this paper aims to achieve the desired objective by implementing an optimum clustered routing protocol is presented inspired by glowworm's luminescence behavior. The prime purpose of the Glowworm swarm optimization with an efficient routing algorithm is to enhance coverage and connectivity across the network to ensure seamless transmission of messages. To formulate the Objective function, it considers residual energy, compactness (intra-cluster distance), and separation (inter-cluster distance) to provide the complete routing solution for multi-hope communication between the Cluster Head and Sink. The proposed technique’s viability in terms of solution efficiency is contrasted to alternative techniques such as Particle Swarm Optimization, Firefly Algorithm, Grey Wolf Optimizer, Genetic Algorithm, and Bat algorithm and the findings indicate that our technique outperformed others by as glowworm optimization’s convergence speed is highly likely to provide a globally optimized solution for multi-objective optimization problems.
Keywords: Glowworm swarm optimization; Heterogeneous network; Meta-heuristics; Clustered target coverage; Energy efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01398-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:14:y:2023:i:2:d:10.1007_s13198-021-01398-z
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01398-z
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().